

CFA - theory

The theory of Confirmatory Factor Analysis

Today's goal:

Teach the idea behind Confirmatory Factor Analysis.

Outline:

- Rationale behind CFA
- Model specification and identification
- Estimation
- Item, Factor, and Model Fit

What if the items do not have an equal correlation?

 $b_{A1} \neq b_{A2} \neq b_{A3} \neq b_{A4}$

And what if we want to measure multiple traits?

Establish convergent and discriminant validity CFA can suggest ways to remedy problems with the scale

Outcome is a normally distributed measurement scale Even when the items are yes/no, 5- or 7-point scales!

The scale captures the "shared essence" of the items

You can remove the influence of measurement error in your statistical tests!

- Factors are **latent constructs** that represent the trait or concept to be measured
 - The latent construct cannot be measured directly
- The latent construct **"causes"** users' answers to items Items are therefore also called **indicators**
- Like any measurement, indicators are not perfect measurements
 - They depend on the true score (loading) as well as some measurement error (uniqueness)

Identification

of CFA models

Factors need to be **scaled** in order to be identified Unit Loading Identification (ULI)

Factors need to be **scaled** in order to be identified Unit Variance Identification (UVI)

By looking at the **overlap** (covariance) between items, we can separate the measurement error from the true score! The scale captures the "shared essence" of the items

The factor is assumed to explain **all** of this overlap

The partial correlation between A1 and A2 controlling for factor A is assumed to be zero!

There can be a **residual correlation**, but such a model will be more difficult to identify

Each item belongs to only a **single factor**

Again, **cross-loadings** are possible, but such a model will be more difficult to identify

There still exist a relationship between A1 and factor B Because factor B is correlated to factor A

A model with no residual correlations and no cross-loadings is called a **unidimensional model**

It is identified if each factor has at least 2 items (3 if it is only a single factor)

Example model with residual correlations and cross-loadings Try to avoid this as much as possible

Estimation

of CFA models

- The basis for Factor Analysis is the item correlation matrix Or the covariance matrix (which is a little more complex)
- How do we determine the loadings etc?
 - By **modeling** the correlation matrix as closely as possible! This is the job of that wizard in your computer...

	А	В	С	D	E	F
Α	1.00	0.73	0.71	0.34	0.49	0.34
В	0.73	1.00	0.79	0.35	0.32	0.32
С	0.71	0.79	1.00	0.29	0.33	0.35
D	0.34	0.35	0.29	1.00	0.74	0.81
E	0.49	0.32	0.33	0.74	1.00	0.75
F	0.34	0.32	0.35	0.81	0.75	1.00

	А	В	С	D	E	F
Α	1.00	0.73	0.71	0.34	0.49	0.34
В	0.73	1.00	0.79	0.35	0.32	0.32
С	0.71	0.79	1.00	0.29	0.33	0.35
D	0.34	0.35	0.29	1.00	0.74	0.81
E	0.49	0.32	0.33	0.74	1.00	0.75
F	0.34	0.32	0.35	0.81	0.75	1.00

Estimate the correlation matrix:

Estimated

	А	В	С	D	E	F
А	0.71	0.76	0.71	0.34	0.29	0.35
В	0.76	0.83	0.77	0.36	0.32	0.38
С	0.71	0.77	0.72	0.34	0.30	0.35
D	0.34	0.36	0.34	0.79	0.69	0.82
E	0.29	0.32	0.30	0.69	0.61	0.72
F	0.35	0.38	0.35	0.82	0.72	0.85

Estimated

	А	В	С	D	Е	F
Α	1.00	0.73	0.71	0.34	0.49	0.34
В	0.73	1.00	0.79	0.35	0.32	0.32
С	0.71	0.79	1.00	0.29	0.33	0.35
D	0.34	0.35	0.29	1.00	0.74	0.81
E	0.49	0.32	0.33	0.74	1.00	0.75
F	0.34	0.32	0.35	0.81	0.75	1.00

	А	В	С	D	Е	F
A	0.71	0.76	0.71	0.34	0.29	0.35
В	0.76	0.83	0.77	0.36	0.32	0.38
С	0.71	0.77	0.72	0.34	0.30	0.35
D	0.34	0.36	0.34	0.79	0.69	0.82
E	0.29	0.32	0.30	0.69	0.61	0.72
F	0.35	0.38	0.35	0.82	0.72	0.85

	А	В	С	D	Е	F
А	0.29	-0.03	0.00	0.00	0.20	-0.01
В	-0.03	0.17	0.02	-0.01	0.00	-0.06
С	0.00	0.02	0.28	-0.05	0.03	0.00
D	0.00	-0.01	-0.05	0.21	0.05	-0.01
E	0.20	0.00	0.03	0.05	0.39	0.03
F	-0.01	-0.06	0.00	-0.01	0.03	0.15

Residual

	А	В	С	D	E	F
Α	0.29	-0.03	0.00	0.00	0.20	-0.01
В	-0.03	0.17	0.02	-0.01	0.00	-0.06
С	0.00	0.02	0.28	-0.05	0.03	0.00
D	0.00	-0.01	-0.05	0.21	0.05	-0.01
E	0.20	0.00	0.03	0.05	0.39	0.03
F	-0.01	-0.06	0.00	-0.01	0.03	0.15

Covariance matrix, estimate variables to fit ML, WLS

Use estimates and misfit in item-, factor-, and model-fit metrics

Item-fit: Loadings, communality, residuals Factor-fit: Average Variance Extracted Model-fit: Chi-square test, CFI, TLI, RMSEA

Item, factor & model fit of CFA models

Variance extracted (squared standardized loading):

- Regression R², which is the amount of variance explained by the factor (1-uniqueness)
- Should be > 0.50 (although some argue 0.40 is okay)

In lavaan output: r-squared

Variance extracted

	А	В	С	D	E	F
А	0.29	-0.03	0.00	0.00	0.20	-0.01
В	-0.03	0.17	0.02	-0.01	0.00	-0.06
С	0.00	0.02	0.28	-0.05	0.03	0.00
D	0.00	-0.01	-0.05	0.21	0.05	-0.01
E	0.20	0.00	0.03	0.05	0.59	0.03
F	-0.01	-0.06	0.00	-0.01	0.03	0.15

Residual correlations:

- The observed correlation between two items is significantly higher (or lower) than predicted

In lavaan output: modification indices

Residual...

	А	В	С	D	E	F
Α	0.29	-0.03	0.00	0.00	0.20	-0.01
В	-0.03	0.17	0.02	-0.01	0.00	-0.06
С	0.00	0.02	0.28	-0.05	0.03	0.00
D	0.00	-0.01	-0.05	0.21	0.05	-0.01
E	0.50	0.00	0.03	0.05	0.39	0.03
F	-0.01	-0.06	0.00	-0.01	0.03	0.15

If you have lots of residuals, it might mean that factors should be split up!

E.g., "satisfaction" turns out to be "satisfaction" and "intention to use"

In lavaan: low r-squared, many high modification indices

Split factors...

	А	В	С	D	E	F
Α	0.59	0.29	0.24	-0.27	-0.23	-0.30
В	0.29	0.47	0.19	-0.20	-0.19	-0.31
С	0.24	0.19	0.58	-0.31	-0.25	-0.28
D	-0.27	-0.23	-0.30	0.51	0.30	0.18
E	-0.20	-0.19	-0.31	0.30	0.69	0.25
F	-0.31	-0.25	-0.28	0.18	0.25	0.45

Cross-loadings:

- When the model suggest that the model fits significantly better if an item also loads on an additional factor
- Could mean that an item actually measures two things
- In R: modification indices

Cross-loadings...

	А	В	С	D	E	F
Α	0.29	-0.03	0.00	0.00	0.20	-0.01
В	-0.03	0.17	0.02	-0.01	0.00	-0.06
С	0.00	0.02	0.28	-0.05	0.03	0.00
D	0.00	-0.01	-0.05	0.21	0.05	-0.01
E	0.34	0.36	0.36	0.05	0.39	0.03
F	-0.01	-0.06	0.00	-0.01	0.03	0.15

For all these metrics:

- Remove items that do not meet the criteria, but be careful to keep at least 3 items per factor
- One may remove an item that has values much lower than other items, even if it meets the criteria

Factor-fit metrics

AVE (average variance extracted, over all items per factor) - In lavaan: average r-squared of items per factor

A value > 0.50 indicates convergent validity

– Otherwise, remove worst-fitting items

Also, the square root of the AVE of a factor should be higher than its highest correlation with other factors

- This indicates discriminant validity
- Otherwise, the factors may as well be combined

Factor-fit metrics

Chi-square test of model fit:

- Tests whether there any significant misfit between estimated and observed correlation matrix
- Often this is true (p < .05); factor models are rarely perfect!
- Alternative metric: chi-squared / df < 3 (good fit) or < 2 (great fit)

CFI and TLI:

- Relative improvement over baseline model; ranging from 0.00 to 1.00
- CFI should be > 0.96 and TLI should be > 0.95

RMSEA:

- Root mean square error of approximation
- Overall measure of misfit
- Should be < 0.05, and its confidence interval should not exceed 0.10.

Model-fit metrics

"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw